Modular Arithmetic

Addition

Addition in modular arithmetic is sometimes called Clock Arithmetic. Addition done not on a number line, but on a circle.

Mod 3

Mod three means that there are 3 numbers in the base set to compute with: 0, 1, 2 After you get to 2 (the last number), adding 1 means you start around again.

Symbol and Meanings chart

Symbol	Meaning
Ξ	Equivalence (i.e. 2 numbers which differ by a multiple of the modulus)
=	Equality (as used in standard mathematics)

Example: $2 + 2 \equiv 1 \pmod{3}$

And $2 + 1 \equiv 0$ The numbers 2 & 1 are "<u>additive inverses</u>".

Note: Additive Inverses occur when two numbers are added together and their sum is 0

Mod 3 Addition	0	1	2
0			
1			
2			

<u>Mod 5</u>

Mod 5 means that there are 5 numbers in the base set: 0, 1, 2, 3, 4 After you get to 4, adding 1 means you start around again.

Example: $3 + 4 \equiv 2 \mod 5$ The additive inverses (mod 5) are: 1 & 4 and 2 & 3;

Mod 5 addition	0	1	2	3	4
0					
1					
2					
3					
4					

<u>Mod 7</u>

Mod seven means that there are _____ numbers in the base set: ____, ____, ____,

After you get to ____, adding 1 means _____

Examples:

1. $3 + 4 \equiv (\mod 7);$ 2. $5 + 5 \equiv (\mod 7);$

 $3.2 + 6 \equiv (\mod 7);$ $4.1 + 5 \equiv (\mod 7);$

The additive inverses of (mod 7) are: 1 & 6; 2 & ___; 3 & ___; 4 & ___; 5 & ____

Mod 7 Addition				

Subtraction in Modular Arithmetic

Subtraction means add the negative of the number in a counter-clockwise direction.

<u>Mod 5</u>

 $3 + (-1) \equiv 2 \pmod{5};$ $1 + (-4) \equiv 2 \pmod{5};$ $3 + (-4) \equiv 4 \pmod{5}$

There are at least two ways for you to think about modulus subtraction. Clock arithmetic and counter- clockwise counting is one way and using additive inverses is another.

Problem	Additive Inverse Method	reason
3 + (- 1) ≡ 2 (mod 5)	$3 + 4 \equiv 7 \equiv 2 \pmod{5}$	4 & 1 are additive inverses
$1 + (-4) \equiv 2 \pmod{5}$	1 + 1 ≡ 2 (mod 5)	1 & 4 are additive inverses
$3 + (-4) \equiv 4 \pmod{5}$	$3 + 1 \equiv 4 \pmod{5}$	1 & 4 are additive inverses

Examples:

5. 1 – 3 ≡	(mod 5)	6. 3−4 ≡	(mod 5)
7. 4 – 3 ≡	(mod 5)	8. 0 – 2 ≡	(mod 5)

Subtraction Table (mod 5)

Mod 5 Row - Column	0	1	2	3	4
0					
1					
2					
3					
4					

<u>Mod 7</u>

$$5 - 5 = 5 + (-5) = 0 \pmod{7}$$
 OR $5 + 2 \equiv 0 \pmod{7}$
 $3 - 6 = -3 \equiv 7 - 3 \equiv 4 \pmod{7}$ OR $3 + 1 \equiv 4 \pmod{7}$

Subtraction Table (Mod 7)

Mod 7 Row-Column				

Practice Problems

Mod 9	
9. 7 – 6 ≡	10. 3 – 8 ≡
11. 6 – 7 ≡	12. 8 – 5 ≡
Mod 10	
13. 7 – 6 ≡	14. 3−8≡
15. 6 – 7 ≡	16. 8 – 5 ≡
Mod 11	
17. 7 – 6 ≡	18. 3 − 8 ≡
19. 6 – 7 ≡	20. 8 – 5 ≡
21. 6 – 10 ≡	_ 22. 1 – 5 ≡
Mod 12	
23. 7 – 6 ≡	24. 3−8≡
25. 6 – 7 ≡	26. 8 – 5 ≡
27. 6 – 10 ≡	_ 28. 1 – 5 ≡